I NTRCL

LI NKER AND LOADER
REFERENCE MANUAL

The contents of this manual have been carefully reviewed and are
believed to be entirely correct. However, Introl Corp. assunes no
responsibility for inaccuracies.

The software described in this manual is proprietary and is
furni shed under a license agreement fromlintrol Corp. The software
and supporting docunentation may be used and/or copied only in
accordance with said |license agreenent.

INTROL-C is a registered trademark of Introl Corp.
UNI X is a trademark of Bell Laboratories

TNl X is a trademark of Tektronix, Inc.

INNX is a trademark of Introl Corp.

Introl Corp.
647 W Virginia St.
M | waukee, W 53204 USA

tel. (414) 276-2937

Copyright 1983 Introl Corp.
All R ghts Reserved

Tabl e of Contents

Li nker And Loader

Tabl e of Contents ...
Linker
Loader
Li brary manager

Appendices

L.O.

Ref erence Manual

1

L.

0.

2

LI NKER

The function of the Linker is to join several relocatable object
nmodul es together to form a single relocatable object nodule as the
result. Normal Iy, when the Introl Linker finishes, it will
automatically call the Loader, causing the object nodul e produced by
the Linker to be then translated into an executable file by the
Loader. Once such executable file has been generated, the actua
object nodule generated by the Linker is normally automatically
del eted. Thus, although the Linker itself produces an internedi ate
rel ocatable nodule, the nore usual result of a |linker command |ine
call is an executable file that is subsequently produced by the
Loader. Options are provided, however, to permt the Linker's output
module to be retained even though an executable file has been
produced; also, an option exists to inhibit the Loader call entirely
when the desired result is sinply the relocatable nodul e generated
by t he Linker.

LI NKER COMVAND LI NE

The general formof the Iink conmand line is:
ilink <files> {<options>} {<files>} {<options>}

where <options> can be zero or nore Linker and Loader option
specifiers (described later in this Section), and <files> are the
filenanes of the relocatable files or libraries which are to be
input to the Linker. Unless an option to inhibit loading is
explicitly specified on the commuand line (the "-n" option), the
Loader will be automatically executed when the Linker finishes.

The Linker expects each of its input files to have a filenane

extension; if none is explicitly defined, the fil enane extension is
assuned to be ".R', whichis the filenane extension normally
assigned to relocatable files generated by the Assenbler. |If the
Linker is being run i ndependently (ie wth the "-n" option

specified, which inhibits the automatic call to the Loader), the
Linker will produce a relocatable nodule as the end result, having

the filename extension ".RL". Such nodules (ie nodules which have
been Iinked but not | oaded) are thensel ves rel ocatabl e nodul es which
can be legally reused as inputs to the Linker, if desired. |If the
Loader call is not explicitly inhibited, a link command |ine cal

will result in generation of an executable output file as the fina
result (ie, the file produced by the Loader pass). In this latter

case, the internmediate relocatable nmodule generated by the Linker
(ie the file having a ".RL" filename extension) will not be retained

unless the wuser specifically opts to do so (via the "-r" Linker
option). In either case, the filenanme assigned to the output
nmodul e(s) produced as a result of the linker call will be determ ned
by the "primary function name" synbol, which is discussed under

Oper ati on, bel ow.

OPERATI ON

VWhen the Linker is first invoked, it begins its |inking process by
attenpting to resolve two references which are inplicit to the
Linker. The first is called the "primary function nane", the second
is the program "entry point". The wuser nmay, as an option
specification on the link comrmand line (the "-me<file>" option),
specify any synbol as a primary function nane. If none is explicitly
defined, however, the primary function nam ng synbol will be assumned
to be " _min", the synbol that represents the name of the usua
starting function ("main") in a C program The fil enane of the
module in which the Linker finds the primary function name will
normally be the nane assigned to the Linker's relocatable output
modul e, but with the fil ename extension ".RL" being appended to the
Li nker' s out put nodul e.

The Linker begins its search by first searching through all of the
files specified on the link command |line, searching these files in
the order they are listed, attenpting to resolve the primry
function nanme. |If it succeeds, it will include the nodule which
contains the definition of the primary function nane, and will then
proceed to resolve any external references which that nodul e nakes.
(If the primry function nane cannot be found, the Linker
automatically |loads the Standard Library and attenpts to resol ve the
"entry point" synbol, as described below) Wen all possible
external references caused by inclusion of the nodul e containing the
primary function name have been satisfied, the Linker wll then
attenpt to resolve the "entry point” synbol. In doing so, the Linker
will first search through the files on the Iink command Iine, and
then search the Standard Library if necessary, |ooking for a nodule
whi ch has an entry point synbol defined. If it finds one, it wll
include the nmodule which contains the entry point and attenpt to
resol ve any resultant external references that nodul e nakes.

An unnodified Standard Library wll always contain a nodule for
which an entry point is defined. This is the nodule usually used to
set up the environnment required before the first C function (usually
"main") can be executed. The Conpiler itself does not normally
define an entry point when it produces a nodule. An assenbly
| anguage programmrer, however, nmay specify the entry point of an
assenbly |anguage nodule by placing the nane of the entry point
following the END assenbler directive. |If there is nore than one
nmodul e with an entry point defined, the Linker will assume the entry
point is that of the first such nmodule it finds after beginning its
search. It begins its search with the files on the |ink comand
line, scanning left to right, and then searches the Standard
Library, top to bottom Therefore, if a nodule on the |ink comrand
line defines an entry point, that nodule wll be the first nodule
found by the Linker and, therefore, wll be the one selected for
inclusion (ie rather than the nodule contained in the Standard
Li brary). If no module on the link command |ine contains an entry
point, the Linker will assume the entry point synbol is "cstart”,
whi ch happens to be the usual nanme for the Standard Library routine
whi ch sets up the environnment for a C program

L.1.2

The Linker termnates when it has no nore external references to
resolve or, alternatively, when it runs out of files to search in
attenpting to satisfy any unresolved references that mght stil

exi st. The Linker's output will be a relocatable nodule that has the
same nanme as the nane of the nodule which contains the primary
function name, but with a ".RL" filenane extension appended. When

t he Li nker has determined it has resolved all the externa
references it possibly can, it will automatically call the Loader
If all external references have been successfully resolved by the
Li nker, the Loader will load the Linker's output into an executable
output file. If unresolved references still exist, however, the

Loader will conplain and | oading of the nodule will be unsuccessful.

As indicated above, it is perfectly legal to use the Linker to |ink
several nodul es together which, of thenselves, do not satisfy al
the external references they nake. This feature is very useful when
it is desired tolink two or nore relocatable files together to
produce a single resultant "partially Iinked" nmodule (which may
contain some unresolved references). Such partially Iinked nodul es
may thenselves then be reused as inputs in subsequent |inking
operations, and linked with other relocatable nodules as necessary.
I n such-cases, when it is the user's intention to do partial |inking
of this type, a user option ("-n") to prevent automatic execution of
t he Loader nust be specified on the Iink conmand |i ne.

In many cases, such as for a conmpiled C programcontained in a
single nodule, calling the Linker may be as sinple as specifing the
nane of a single relocatable file produced by the Conpiler. For
exanple, if the file to be Iinked and |oaded had the name "test.R"
(which is the file that would be produced by the Compiler if the
user had conpiled a programcalled "test.c"), the user could cal
the Linker by entering the follow ng:

ilink test

For this exanple, the Linker would proceed to first link the file
"test.R" with applicable referenced functions from the Standard
Library ("libc.R'), producing the Ilinked nodule "test.RL" as an
intermediate result. It would then automatically call the Loader
which would load "test.RL" into either an executable file or a file
of load records, as appropriate to the type of Introl Loader being
used. Since the "-r" option was not specified on the |inker comrand
line for this particular exanpl e, the Loader would al so
automatically delete the "test.RL" file when it had finished using
it. Note that it is unnecessary to specify the Standard Library,
"l'ibc.R', on the command line; the Standard Library is always
inplicit to the Linker when it is called.

LI NKER CLASS LI ST

Each rel ocatabl e nodul e produced by the Assenbler, as well as each
modul e contained in the Standard Library, has an attribute called

L.1.3

its "class", which is a user-assignabl e nunber from
"0" (zero) to

" 255", During the 1linking process, the Linker always uses the
nodul e's class nunber in conbination with the nodule's filenane for
nmodul e identification purposes. The class nunber is, in effect, an
"extra identifier" that provides a nechanism for distinguishing
bet ween several identically named nodul es that nay be contained in a
library.

The default "class" for nodules produced bv the Assenbler is "0";
however, any other legal class nunber (ie "1" through "255") may be
sel ectively assigned to any of these nodules by the user. Simlarly,
nmost of the library routines contained in the Standard Library,
libc. R have a preassigned class nunmber of "C', although severa

non-zero class nodules are also supplied. For exanple, libc.R
contains 3 different classes of the ofnm routines used by the
"printf", "fprintf", and "sprintf" Standard Library functions
(classes 0, 5, and 6) and 3 different classes of the inft routines
used by the "scanf", "fscanf", and "sscanf" Standard Library
functions (classes 0, 7, and 8). The class 0 ofnt routine supports
longs, ints, and floats; the class 5 ofnt routine supports |ongs
only; and the class 6 ofnmt routine supports longs and ints.
Simlarly, the class 0 ifnt routine supports longs, ints, and

floats; the class 7 ifmt routine supports only longs; and the cl ass
8 ifnt routine supports longs and ints.

Because of a relocatable nodule's class attribute, one of the l|ink
time options available to the user is the specification of a "linker
class Ilist" on the Ilink conmand |ine. Use of a class |list
specification is only necessary when the user wants nodul es ot her
than class "O' nodules to be considered for inclusion by the Linker

The linker <class list specification defines tw things to the
Linker: (1) it defines the specific non-zero classes of nodul es that
should be potentially considered for that particular |ink process,
and (2) it simultaneously establishes a priority ranking of these
cl asses of nodul es, which enables the Linker to choose the "correct”
module from anong possibly several that my have been given
identical filenames in a library.

A linker class list is specified on the link command |ine as one or
nore <option> entries of the form

t=<class list>

where <class list>is a series of one or nore nunerical values from
"1" through "255" (see -t option below). The nunerical values
contained in <class list> represent those specific non-zero nodul e
classes, listed in the order in which they are to be "preferred" for
possi ble wuse, which are to be considered potentially wvalid for
inclusion for that particular |link process. Mdules of class "O' are
ALVAYS inmplicit in any class list specification and therefore are
not included in a linker class list on the command |ine. The Linker
automatically assigns |owest "preference” to class "O' nodul es and
will only use aclass O nodule if it cannot find some other

1.

identically named nodul e having one of the non-zero

cl asses defined
in the linker class list.

As nentioned wearlier, a class |list specification on the linker
command link is only necessary if nodul es having a class other than
"0" are to be considered for use by the Linker. Wien a class list is
specified, however, it is inmportant to note that the order in which
any class nunbers appear on the command line is just as significant
to the Linker as the actual class nunbers thensel ves. This is
because the Linker (which scans the entire command line fromleft to
right to determine all of the acceptable classes) assunes that the
class nunbers are listed by the user in ordered sequence on the
command line, with the "nost preferred'' class being the class it
first encounters on the command line, the "next nost preferred"
class being the second class it encounters, and so on. The Linker
will always select the "nost preferred" class of any given nanmed
nodul e that it can find.

An ordered class list of this type is necessary for the user to
unambi guously define, and the Linker to properly select, the
i ntended nodul e in many i nstances. For exanple, suppose the user had

conpil ed and assenbled a program nodule, "filel", (with a class of
"0") that referenced two library routines contained in the Standard
Library, one called "abc" and the second called "xyz". Furt her

assune that two different versions of the abc nodul e existed, one
with class 0 and the other with class 1; and three versions of xyz
existed, one with class 0, one with class 1, and one with class 2.
If the user wanted to link filel with the class 1 nodul e of abc and
the class 2 nodule of xyz, he could enter a |link conmand |Iine such
as:

ilink filel t=2,1

In this case the Linker would ascertain that, given the choice, it
should give highest preference to using class 2 nodules, next
hi ghest preference to class 1 nodules, and |owest preference to
class O nodules. During the linking process the Linker would first
look for aclass 2 filel nodule and, failing that, then | ook for a
class 1 filel nodule and, failing that, then look for a class 0 file
1 nodule, which it would find and therefore include. The Li nker
would then begin searching the Standard Library to resolve the
references filel makes to abc and xyz. it would begin its search for
abc by first looking for an abc class 2 nodule and, failing that,
t hen begin | ooking for an abc class 1 nodule which it would find and
link inwith filel to resolve the reference nade to abc. Simlarly,
it would begin its search for xyz by first looking for an xyz cl ass
2 nodule which it will find and link into filel to resolve the
reference made to xyz. Aithough an abc class 0 nodul e and xyz cl ass
1 and xyz class 0 nodules also existed in the library, these would
have been ignored by the Linker inasnuch as it had been able to find
"nore preferred" versions of abc and xyz.

By conparison, if the user had used a I|ink conmmand 1|ine such as

1.

5

ilink t=1,2 filel

the Linker would instead have given highest preference to class 1
nmodul es and next highest preference to class 2 nodules, with class 0
nodul es again having |owest priority (as is ALWAYS the case for

class O nodules). In this case the Linker would first look for a
class 1 filel npdule, then a class 2 filel nodule, and then a cl ass
O filel nobdule which it would find and incl ude. The Li nker woul d

then look for, find, and Ilink in the ("nost preferred") class 1 abc
nmodul e; then look for, find, and link in the ("nost preferred")
class 1 xyz nodul e. The class 2 xyz nodule would ONLY have been
considered for inclusion in this instance if the Linker were unable
to find the "nmore preferred" class 1 nodule, which of course it does
find in the exanple situation given

Notice that the class list may contain nultiple class specifiers and
that class zero is ALMAYS inplicit in any class list specification

LI NK COVWAND LI NE OPTI ONS

Li nker options, as well as Loader options, may be specified on the
link command line. Loader options, if specified, will be passed on
to the Loader when it is automatically called by the Linker. The
"linker-specific" options |listed below are those options which apply
specifically to the Linker, per se. The Loader options that may al so
be specified on the 1link command line are discussed in the Loader
Appendi ces to this nmanual

Li nker - Specific options include:

-b
This option prevents the Standard Library, "libc.R', from being
searched by the Linker. Usually this option is specified in
conmbination with the "-f" Linker option, discussed bel ow, when
prograns are being

-c=<file>
The option specifies that <file> is a command file where the
Li nker will find additional information. The command file is a
text file which may contain extra options and additional file
nanes to be referenced followi ng those listed on the comrand
line. Each option or file name nmust appear on a separate line
in the command file.

- d[<c>]

This optionis wused for specifying, at Ilink tine, which of
several (optionally available) Introl Loaders is to be called
by the Linker when linking is conpleted. Specifically, use of
this option will cause the Linker to call the Loader whose
Introl filename is "<c>ld", where the <c> represents the first
character of the desired Loader's " For exanple, the

nanme" .

option specification "-dh" would instruct the Linker to cal
the Loader naned "hld" when it finishes (assum ng of course
that the "hld" Introl Loader is actually available for use). If
the -d[<c>] option is not specified, or if there is no
character specified via the <c> entry, the Loader selected for
use wll default to the "standard" Loader supplied with the
Conpiler. (In general, the "standard" Loader is one which
pr oduces code that 1is executable on the Conpiler's host
operating system) The several different types of Loaders that
are optionally available for wuse, and the "<c>d" names
associated w th each, are described in the Loader Appendix of
thi s manual

NOTE: When an "optional" target- system dependent-type of
Loader is being specified for wuse, the compatible "standard
library" supplied with that optional Loader nust also be
specified for use during the Iinking process. In such cases the
"-b" Linker option can be used to inhibit the Linker's use of
the "standard" libc.Rlibrary, and the "-f" option used to
instruct the Linker to instead find and use the "optional”
standard library which is conpatible with the target operating
system

- e=<synbol >
This option sets the entry point. If the <synbol> being
specifed as the entry point refers to a C synbol that has been
generated by the Conpiler, the <synbol> nane nust include a
| eadi ng underscore character (ie the Conpiler automatically
pre-pends a | eadi ng underscore to all synmbols it generates). If
this option is not used, the Linker will search through all the
modules in the order they are listed on the command |ine, and
then search the Standard Library if necessary, in an attenpt to
find one which has an entry point defined. The entry point wll

be that of the first such file the Linker finds. |If no input
nmodul e specifies an entry point, the Linker will usually find
one called "cstart” in a nodule of the same nane in the
Standard Library. For assenbly |anguage prograns, an entry

point is placed in a nodule by placing the desired entry point
synmbol on the "end" directive in an assenbly | anguage file (see
Assenbl er section of the Conpil er Reference Manual).

-f<string> or -f=<string>
This option, which has two forms, is used to specify that
additional Ilibraries wll be found in the standard library

pl ace which are to be searched by the Linker (ie libraries that
are to be searched in addition to the Standard Library,
libc. R} .The "-f<string>" formof the option specifies that an

additional Ilibrary to be searched is naned "lib<string> R',
wher e <string> represents any series of characters. The
"-f=<string>" formspecifies that an additional library to be

searched is nanmed "<string> R', where <string> can represent
any string of characters. This option nust normally be used
(together with the "-b" option nentioned above) when an
"optional"” Loader is being called; this is necessary so that

the Linker uses a "standard library" which is conpatible with
that particul ar Loader.

SI[s]Ix][ul[=<file>]

This option causes a linker Ilisting to be produced. The
optional file nane indicates that the listing is to be placed
in the indicated file rather than being |isted on the console.
The "s", "x" and "u" characters are all optional and affect
the listing's contents, as follows: |If the "s" character is
specified the Ilisting will include all synbols. If the "X'
character is specified the listing wll include a cross
reference synbol listing. If the "u" character is specified the
listing will include a list of the nodules taken from each
the files specified on the command |ine. Any conbi nation of
these three characters nmay be specifi ed.

- me<synbol >

This option defines the primary function naming synbol. The
primary function name is the external reference which the
Li nker attenpts to resolve first. If left unspecified, the

nam ng synbol defaults to "_main", which is usually the primry
function in a C program (At the C programlevel this primry
function nane is specified as "mmin", but the |eading
underscore is added by the Conpiler, as is the case for al

synbol s generated by the Conpiler. It is therefore inportant to
r emenber that, when specifying a naming synbol that is
contained in a conpiled nodule, the synbol wll always begin
with a |eading underscore.) The filenane of the nodul e which
contains the primary function name is normally the nane that

will be assigned to any file(s) produced as a result of a
Li nker call line.

-n
This option prevents the Loader from being automatically
execut ed when the Linker finishes. Wen the "-n" option is not
specified, the Linker will normally default to calling the
"standard" Loader (unless some other |[|oader type has been
optionally specified using the "-d(<c>]" option discussed
previously).

-o=<file>
This option is used to assign a specific name, represented by
<file> to the Linker's output file. If this option is not used
the output file will be given the sanme nane as the nodule in
which the primary function name is found. If no filenane
extension is explicitly specified, the Linker output filenane
will default to having a ".RL" extension

- P[<C]

This option is useful only an Unix-1ike operating systens, such
as UNLX, INLX, and TNI X for exanple. On such systenms, it causes
the output of the Linker to be piped to the Loader rather than
to be transferred in a tenporary file. On sone systens this

L.1.8

Wi || cause a noticeable speed, inprovenent. The [<c>] indicates
an optional character which nmay be wused to specify that the
Li nker output should be sent to a particular optional Loader
when use of the default "standard" Loader is not desired. The
<c> character, when specified, represents the first letter in
the Introl name of the desired Loader, just as for the case of
the "-d[<c>]" option described previously.

This option specifies that the output file is to be stripped of
all non-entry defined synbols. This is useful when producing a

partially linked nmodule in which the user wi shes to "hide" al
the already resolved synbols. Partially |inked nodules are
typically nodules that have been |inked, but not |oaded, which
may still contain unresol ved references.

-t=<cl assl i st>

The

appl i
line.

This option is used to define an ordered listing of those
non-zero class nunbers, between 1 and 255, which are to be
"preferred" for use in the linking process. The <cl asslist> can
be a series of one or nore nunbers from"1" through "255". Wen
a class list contains nultiple class nunber entries, a conma or
peri od nust separate successive class nunbers, as in "t=3,7,4",
for exanple, which specifies the classes "3", "7", and "4". The
order in which class nunbers are entered on the |Iink conmand
line is significant to the Linker and defines the order of

cl ass preference. The first-entered (ie left-nost) class
appearing on the link conmand line wll be given highest
preference for inclusion by the Linker, the second-entered
class will be given next highest preference, and so on. MNbdul es
of class 0 are always considered by the Linker as having | onest
priority and are wused in the Ilinking process only if an

identically naned nodule having a class nunber which is
included in the linker class list specification cannot be found
by the Linker. For exanple, a class list such as "t=3,7,4"
tells the Linker to preferably use nodules of class 3 (if they
can be found), or else use class 7 nodules (if they can be
found), or else use class 4 nodules (if they can be found), or
el se, as a last resort, use nodules of class 0 (if they can be
f ound) .

reader is referred to the Loader Appendices of this manual for
cable Loader options that may be specified on the |ink command

L.1.9

L.1.10

LOADER

It is the Loader's function to fix absolute addresses for the
relocated values in a relocatable nodule, thereby converting a
rel ocatabl e nodule into an "executable"” output file. The Loader is
usual ly called automatically by the Linker but it may al so be called
separately by the user. As indicated below, several different
Loaders are (optionally) available for use with Introl-C and, if the
user has elected to obtain such optional Loaders, a variety of
executable output file formats can be generated, depending on the
Loader bei ng used.

Each resi dent Introl -C conpil er package, and each Introl -C
cross-conpil er package, nom nally includes a single, specific type
of Introl Loader which is considered as being the "standard" Loader
for that conpiler's particular host system configuration. For
resident Introl-C Conpiler packages, the 'standard' Loader that is
furnished is an "operating system dependent” type of Loader which
generates an output file that 1is executable on that particular
Conmpi l er's host system For cross-conpiler versions of Introl-C, the
"standard" Loader furnished is typically a "hex" type Loader that
generates a file of output load records, which can be either
Motorola S Records, intel Hex, Tektronix Hex, or Tektroni x Extended
Hex at user option. Besides the "standard" Loader that acconpanies
any given Conpiler type, it is also possible for the wuser to
optionally obtain and use other conpatible "cross-Loaders” which
generate output formats unrelated to the Conpiler's host operating
system For exanple, "hex-type" Loaders are optionally available for
use with resident versions of Introl-C, "operating system dependent”
type Loaders are optionally available for use with cross-conpiler
versions; etc.

There are, therefore, several different species of Loaders, (as well
as several different types of related Standard Libraries) that may
potentially be used under Introl-C. The "standard" Loader supplied
with vyour Introl-C package, as well as any other Loaders that may
have been optionally ordered, are described in detail in the Loader
Appendi x of this Linker Reference WManual. This Loader section
descri bes the general features that are conmon to all Loader types.

Normally the input to the Loader is expected to be a relocatable
file which has no unresolved external references; if unresolved
references do exist in its input, loading wll normally not be
successful. A Loader option is provided, however, to force a file to
be | oaded even if it contains unresol ved references.

Usually a relocatable file has to be linked before it can be used as
input to the Loader. It is also possible, of course, to assenble a
file which makes no external references and then use the relocatable
output file produced by the Assenbler directly as input to the
Loader (ie w thout having actually linked it).

L.2.1

LOADER COVVAND LI NE

The "standard" Loader supplied with your Introl-C package (see
Loader Appendices to this manual) is normally automatically called
by the Linker when the Linker pass finishes. However, |inker comrand
line options exist (see Linker Section of this manual) that mav be
used to alternatively force the Linker to automatically call other
optional Loaders (assum ng such optional Loaders have been obt ai ned
for wuse). Situations also arise when it is desirable to explicitly
call the Loader alone, wthout first executing the Linker. Wen such
situations arise, the Loader may be independently called by the user
with a | oader command |ine of the general form

<c>ld <file> {<option>}

where <c>ld represents the Introl filename of the specific Loader
being called, <file>is the nane of the (linked) rel ocatable nodule
which is to be | oaded, and (<option>) represents zero or nore Loader
option specifiers.

Each of the potentially usable Introl Loaders is uniquely identified
by a 3-letter Loader filenane, the last two letters of which are
al ways "1 d". The <c> designator indicated in the "<c>ld" |oader cal
on the command I|ine therefore represents the first letter in the
three-letter Loader nane. For exanple, to call the Introl hex type
of Loader, which has the filenane "hld", the "<c>Id" entry on the
command |ine would actually becone "hld". For further specifics on
t he nanes of the | oaders which can be legally accessed, refer to the
Loader Appendi ces of this nanual .

The relocatable file that is input to the Loader is expected to have
a filenarne extension; if none is specified, the default filenane

extension ".RL" is assuned. Normally the name of the executable
output file will be identical to the nane of the input file, but
with a filename extension typically added by the Loader. The

filenane extensions each Loader appends are discussed in the Loader
Appendi ces to this nmanual

LOADER OPTI ONS

Each type of Loader available for use with the Introl-C has its own,
general |y unique set of options. The specific options that apply to
each Loader furnished are discussed in the Loader Appendices.

VWhen the Loader is being called separately, Loader options are

specified directly on the |oader command |ine when the Loader is
being automatically called by the Linker, Loader options are
specified on the link comand I|ine, together wth the Linker
options. If Loader options are specified on the |ink comand |i ne,
any such options (ie those that do not apply to the Linker) will be
automatically sent on to the Loader. For the nost part Linker and

Loader option specifiers tend to be distinct, so that there is
little anbiguity when Loader options are specified on the link
conmand | i ne.

L.2.2

LI BRARY MANAGER

This section describes the features and operation of the Introl
Li brary Manager.

For a programto be succesfully linked and | oaded, all its externa

references nust be resolved. That is, any functions which are
referenced by the program but not included in the program nust be
added to it at link tinme. The Linker can be directed to search
various files to find already conpil ed functions which satisfy these
references. Wien it finds a piece of conpiled code which satisfies a
reference it includes the code in the resultant program Any
conpiled or assenbled file may be a legitimate input to the Linker

To facilitate the Linking process, it is often useful to have a file
whi ch contai ns nore than a single piece of conpiled code so that the
user can specify a whole series of routines to the Linker with a
m ni mum of fuss. Such a file is called a library file, an exanple of
which is the introl-C Standard Library (libc.R). The Linker can
search a library file and selectively extract only those nodules it
requires to link the file.

LI BRARY FI LES

A library file is a file which contains one or nore |inkable object
nmodul es of the type produced by the Introl Assenbler. Wien a file is
conpil ed and assenbled, the result is exactly one |inkable nodule
which is placed into a file. This file is actually a library which
happens to contain only a single nodule. VWhen the wuser links a
program one or nore of these "libraries" are specified on the link
command line. Usually the "libraries" are those produced as a result
of a conpilation and contain only a single nodule, however, they may
al so contain several nodules. The Library Manager, "libman", is a
program whi ch all ows the user to place several nodules into a single
library file. Wen the user has a large set of nodul es which are

commonly wused in progranms, it is usually convenient to place them
all in one library and then sinmply specify the library once on the
link command |ine. The Linker will extract only those nmodules it

requires in order to satisfy the external references of the program

The Linker is designed to automatically search the "Standard
Library", libc.R if it still has external references to satisfy
after it has exhausted all the alternatives provided by the nodul es
specified an the link conmand Iine. For many C prograns, the
Standard Library is usually where nost of the external references
are satisfied. Many users find it wuseful to add to, or nodify
routines in, the Standard Library.

The Library Manager is the utility programwhich allows the user to
create new libraries and al so to nmaintain existing ones.

LI BRARY MANAGER

Because any file that is produced by the Assenbler is already
technically a library file, the Library Manager can correctly be

L.3.1

| ooked upon as a program whi ch manipul ates libraries. Its input is a
library file, such as a linkable object file produced by the
Assenbl er. Thus, in the description below, references to "libraries"
also inplicitly includes those files output by the Assenbl er.

The Library Manager is called by entering a command 1|ine of the
form

i bman <lib> {<optional-direct-conmand>}

wher e <lib> is the nane of the library to be edited and
<optional-direct-conmand> is an optional command to the Library
Manager . If the <optional -direct-comand> entry is omtted, the
Library Manager will enter its "Interactive Mde" of operation and

solicit library managenment conmands fromthe user termnal.

The input library specified by <lib> may be either a new library or
an existing one and, unless the user takes contrary action, it wll
al so be the nane of the output library.

MODES OG- OPERATI ON

The Library Manager has three nodes of operation: Direct Mde,
Interacti ve Mbde, and Command File Mbdde. The nost convenient to use
for sinple additions and deletions to the library is the Direct
Mode. For nore extensive nodifications the user may instead wish to
use Interactive node. The third node is the Conmand Fil e node which
causes the Library Manager to read its conmands froma file rather
than getting themfromthe user termnal.

Direct Mde: 1In Direct Mde the wuser is permtted to specify a
singl e conmand on the library manager conmand |ine. Wen the Library
Manager is called, it executes this single command function and then
i medi ately exits from the Library Manager. When nodifying
libraries, however, a single conmmand function is often all that is
necessary to acconplish the change desired by the user. \en Direct
Mode is being used, the desired conmand is specified right on the
command line, following the <lib> library specification. Any Library
Manager command may be used in the Direct Mde.

Interactive Mde: if no command is specified on the Library Manager
call line, the Library Manager will enter its Interactive Mde of
operati on. In Interactive Mode the Library Manager wll print a
colon (".") as a promet and wll accept a succession of comrands
directly fromthe user terminal. Interactive Mdde is useful when the
user rmust make extensive changes to a library, or when the user
wi shes to step through the Iibrary checking and/or changi ng nodul es
in an "interactive" manner. Once selected, the Interactive Mde wll
remain in effect until the user enters a "quit" or "omt" conmand.

Command Fil e Mbde: One of the conmands which the user can specify as
an Interactive code or a Direct Mode command entry is the "Confile"
conmand. This command instructs the Library Manager to read
subsequent instructions froma command file. VWen a "Confile"

L.3.2

command is entered, the Library Mnager will read from the file
speci fied until it reads a "quit" or "omt" commrand or
alternatively, wuntil it reaches the end of the file. when exiting
the Command File Mbdde, the Library Mnager will return to whatever
nmode it was in before the Command File Mdde was entered. |If the
Command File Mde was entered as the result of a Direct Mde
command, then the Library Manager wll term nate when Command Fil e
Mode is exited. If entered fromthe Interactive Mde, it will return
to the Interactive Mde.

LI BRARY MANAGER COMVANDS

In the descriptions that follow, the comrands nay be abbreviated to
the characters shown in capital letters. For sinplicity, the
descriptions are specified in a BNF type form |In this formitens
encl osed in angle brackets "<" and ">" represent nanes or nunbers to
be chosen by the user. Itens enclosed in square brackets "[" and "]"
represent optional itens. Anything enclosed in curly brackets "{"
and "}" may be repeated zero or nore tinmes. These "neta" characters
(ie <>{,},[, and]) are just to help the user understand what is
required and should not actually be typed in. Thus the "del ete”
specification ...

Del et e {<nmodul e>{, <cl ass>])

means that the delete command (which may be abbreviated to just "d")
requires zero or nmore user-specified nodul e nanes, each of which may
have an optional class specifer which is separated fromthe nodul e
nane by a comma.

In the foll ow ng:

<nmodul e> refers to the nanme of a nodule (which should consist
of a series of characters). The first character may
not be a digit.

<file> refers to any legal file or path name.

<cl ass> is a nunber fromO to 255 which represents a nodule's
cl ass nunber.

Thus a | egal exanple of the delete command coul d be:
d nodul ea, 2 nodul eb nodul ec, 0

whi ch woul d cause three nodul es to be del eted; the class 2 "nodul ea"
nodul e, the class O "nodul eb"” nodule, and the class 0 "nodul ec"
nodul e.

Add {<file>{, <nodul e>f, <cl ass>]}}

The add conmmand is used to add nodules to an existing library or to
create a new library. It consists of the word "add", which may be
abbreviated to "a", followed by one or nore filenanmes, each of which
may be foll owed by zero or nore nodul e specifications, each of which

L.3.3

may include a class specification. |1t is possible to add nodul es at
a specific place in the library (see the "find", comrand) but for
nmost linking applications it makes no difference where a nodule is
located in the library. In Direct Mbde, the add command will add
nmodul es to the end of a library. In Interactive Mdde or Command File
Mode, the Library Manager can be directed to add a nodul e anywhere
in alibrary. The argunment to the add command is a fil enanme which
should contain at |east one |linkable nodule (such as that produced
by a conpilation). The filename may be followed by any nunber of

nmodul e nanes. If there are no specifications following the file
nane, the Library Mnager will attenct to add all of the nodul es
contained in the file. |If specific nodules are named, the Library

Manager will attenpt to add only those nodules fromthe naned file.
Any nodule may have an optional class specification, which is a
nuneric specifier in the range of 0 to 255. If the class
specification is not present, the first nodule encountered having
the specified nodul e name, regardless of its class, will be added to
the library; otherwise only a nodule with a matching nane and cl ass
will be added. The add command w Il not add any nodul e whose name
and class match one already existing in the library.

Del et e {<nobdul e>{, <cl ass>]}
This command allows the user to delete nodules froma library. The
del ete command will attenpt to delete the named nodul es, taking into

account the nodule's class, if it is specified. If the class
specifier is omtted, and there is nore than one nodul e having the
specified name in the Ilibrary, the delete command will print a

warning nessage and will not delete the nodule. The user may then
delete the nodule by specifying the class of the nodule which is to
be del et ed.

The delete command will print a warning nessage if no nodule nane is
speci fi ed.

Revl ace {<fil e>{, <nodul e>{, <cl ass>]}}

The replace conmmand is used to replace nobdules in an existing
l[ibrary. It consists of the word "replace”, which may be abbrevi at ed
to "r" followed by one or nore filenames, each of which may be
followed by zero or nore nodul e specifications, each of which may
include a class specification. The argunent to the replace comrand
is afile name which should contain at |east one |inkable nodule
(such as that produced by a conpilation). The filename may be
followed by any nunber of nodul e names. If there are no nodule
specifications following the file name, the Library Manager w |l
attenpt to replace all of the nodules contained in the file. |If
specific nodules are named, the Library Manager will attenpt to
replace onlv those nodules. Any nodule may have an opti onal class
specification. |If the class specification is not present, the first
module with a matching nane, regardless of its class, wll be
replaced in the Ilibrary; otherwise only a nodule wth a matching
nane and class wll be replaced. The replace command will only
replace a nodule whose name, or nane and class (if both are
specified), match a nodule already in the library.

L.3.4

This command quits the Library Manager, first saving the library
fileif it has changed. This command nay be abbreviated to "

q".

oM T

This command directly exits the Library Manager wi thout saving the
library that was being edited. You may want to remenber this one in
case Yyou hopelessly mess up a library file (although that shouldn't
be cause for panic since the Library Manager always nakes a backup
file). Notice that there is no abbreviation for this comrand.

Li st {<nodul e>{, <cl ass>}}

The Ii1st conmand will print out information an the naned nodul es. If
no nodul es are specified, the list command wll print out
information on all of the nodules in the library.

SLi st {<nodul e>[, <cl ass>] }

This is a short form of the List comrand. It prints out an
abbreviated listing containing only the nodule nanme, class, and
revision of each naned nodule. If no nodules are specified, this

information will be printed for all nodules in the library.

Hel p
The help command allows the user to obtain on-1ine help when using
the Library Manager. It assumes there is a help text file avail able.

The help command will print a nenu and request a nunber fromthe
user; it then prints the associated nessage and enters Interactive
Mbde.

LOad {<file>}
VWhen anything is done involving a library which is currently not in

menory, it is automatically |oaded. The "load" command may be used
to explicitly load a library without actually doing anything with
it. Loaded Ilibraries are not the sanme as the Ilibrary you are
editing; it is sinply a library whose nodule information is in
menory. Wen a nodule is from a library, for exanple, the

modul e information for the entire library is |oaded into nenory so
that the Library Manager can nore quickly reference it. Before a
file is |loaded, the nenory is checked to see if the file has al ready
been loaded. A file is never |oaded nore than once. The "l oad"

command may be abbreviated to "lo

The reason a user may want to load a library explicitly is so the
contents of a loaded library may be listed and exam ned using the
| oad-1ist command as descri bed bel ow.

LList {<file>}
The LList command allows the user to list a |oaded library. Wen

used with a library nane, the LList command will list the contents
of the named library. When specified without any library name the
LList comand wll list the names of all the currently |oaded
libraries. The "llist" comrand rmay be abbreviated to "II".

L.3.5

SLList {<file>}

This command provides an abbreviated |oad-listing, including only
the nodule name, class, and version. Wien this command is used
wi thout any library name specified, it will list the nanes of al
currently loaded libraries. The "sllist" command nay be abreviated
to "sll".

Save {<file>)

The save command will force the Library Manager to save the library
using the filename indicated by <file> |If no filenanme is explicitly
specified, the Ilibrary wll be saved using the library nane
originally specified on the command line. As a safety neasure, any
time a file is saved the Library Manager will nake a backup copy of
any file which would have been overwitten by the save process. It
will append a ".bak" extension to this backup file. The Library
Manager will automatically save the library whenever the user exits
using a "quit" command.

Confile {<file>}

This command wll direct the Library Manager to execute comuands
read fromone or nore specified files wuntil it reads a "quit" or
"omt" fromthe specified files or, alternatively until the end of
the file is reached. An error nessage will be printed if no file is
specified. The "confile" command may be abbreviated by "c"

Echo {<any-string>}

This command sinply echos the specifed strings to the termnal. This
command can be useful in a command file to informthe user of its
pr ogr ess.

| NTeractive

This command will explicitly place the Library Manager in
Interacti ve Mbde. Needless to say, it has no use when already in the
Interactive node, and very |little use as a Direct Mde conmand
(since the user can nore readily enter Interactive Mdde by sinply
not specifing any comand whatever when calling the Library
Manager). It is potentially wuseful in the Command File Mde
however, and can be included in a conmand file to force a return to
the interactive Mode. The "interactive" command may be abbrevi ated
as "int".

Fi nd {<nodul e>{, <cl ass>]}
This command is used to "find" the nodul e whose nanme and class is
gi ven.

There is a pointer in the Library Manager which points to what is
known as the "current” nodule. Wen the Library Manager starts, the
"current” nodule is the last-occurring nodule in the library being
edited (assuning there are any nodules in the library being edited).
VWhen an "Add" command is executed for exanple, the newy added
modul es are added following the "current” nodule. Al nost every
command has sone effect on which particular nmodule in the library is
considered as being the "current” nodule after the conmanded action
has been conpl et ed. Foll owi ng an add command, for instance, the

L.3.6

"current” nodule will becone the |last nodul e that was added because
of that add command. The |ist command al so causes the current nodul e
to becone the last nodule that is actually listed. |In this manner
user command inputs continuously alter which specific nodule is
actually considered the "current” nodul e at any give tine.

The find command can be used to explicitly define the current nodul e
to be any specific nodule in a library. Thus, if the user wishes to
pl ace a nmodule in a specific place within the library, he can "find"
the nodule which is to imediately precede the new nodul e, and then
"add" the new nodule. This will cause the new nodule to be placed
i Mmediately after the nmpdule that was "found" wusing the find
conmand; this, of course, would also cause the "current” nodule to
t hen becone the new y added one.

The find command will attenpt to nove the "current” nodul e pointer
to the nanmed nodule. It starts searching fromthe current nodul e and

continues until it reaches the bottomof the file, at which point it
starts searching from the top of the file. It searches in this
manner until it finds the naned nodule, or until it reaches the

original current nodule. If no nodule <class is specified, the find
command will stop at the first nodule it encounters that has the
specified nodule name, regardless of its nodule class nunber;
otherwise it will attenpt to find a nodule which has both the nane
and class specified in the find comand.

Print {<nodul e>[, <cl ass>]}

Thi s command causes information to be printed for the naned nodul es.
If no nodules are specified, it wll print information on the
"current" nodul e.

SPrint {<nodul e>[, <cl ass>]}

This conmand works just like the Print commrand except it prints an
abbreviated 1isting which includes only the nanme of the nodule, its
class, and its revision.

Insert {<file>{, <nmodul e>f,[class>]}}

This command is simlar to the "Add" command except, rather than
pl aci ng the named nodul es after the "current” nodule, it will place
them proceeding the current nmodule in the library. Wen the Insert
function finishes, the last nodule that was inserted then becones
the current nodul e.

St eppi ng Through The Library

VWen editing a library using the Library Manager, a pointer exists
which indicates the "current” nodule (as was described previously
under the "find" command). This pointer is used as a starting point
for searches when addi ng, exchanging, and deleting nmodules. It also
points to the nodule which will be printed out by a "print" comrand
when print is used w thout arguments. Mdst of the conmands affect
the wvalue of this pointer, usually leaving it pointing to the | ast
nmodul e that was referenced. There are several ways for the user to
change the "current” nodule pointer. One is via the "find" command
(see the Find command, above). For exanple, the foll ow ng comrand

L.3.7

nmoves the painter to a nodul e named "t hi ng"
find thing

The wuser nmay also nmove the current nodule pointer around in a
"relative" fashion by specifing a signed integer on the line. For

exanple, the following will nove the pointer backwards four (4)
nodul es:
-4

By conparison an entry such as:
+2
will nove the pointer forward two (2) nodul es.

It is also legal to specify one or nore successive mnus ("-")or
plus ("+") signs to indicate the total nunber of nodules to nove
backward or forward. For exanole, a single mnus or plus sign would
nmove the pointer backward or forward one nodul e, respectively. Two
mnus or two plus signs will nove the pointer backward or forward
two nodul es respectively (one for each synbol), and so on. It is
also legal to nove the pointer to a nodule |ocated an absolute
nunber of nodules fromthe begining of the library; this is done by
entering an unsi gned nunber. For exanple, entering:

12
will nove the pointer to the twelvth nodule in the library.

Any time one of these conmands is executed, the Library Manager wll

print the name of the resultant current nodule. |If one of these
commands attenpts to nove the "current nodul e pointer" above the top
or below the bottomof the library, the Library Manager will print

"TOP" or "BOTTOM' respectively.

CRst ep

Executing this conmand toggles a flag which, when "on", causes a
carriage return to act like a plus ("+") sign. This then allows a
user to step down through the library, one nodule at a tine, by
sinmply hitting the carriage return. The CRstep conmand toggles this
feature on (if previously off) or off (if previously on) with each

execution. Therefore, if this feature has been previously sel ected
to be "on", it can be selected to be "off" by sinply re-entering the
CRst ep command once agai n.

QUI ET

This command will prevent the Library Manager fromprinting out the
nane of the current nodul e when the "current nodul e" pointer noving
commands are used. The "quiet" conmand may be abbrevi ated by "quie".

Addi ti onal Notes
If the user wishes to wite out a nmodule which is in a library, this

L.3.8

can be easily done by a command of the type:

i bman newnrod add ol dl i b, nod

For the filenanes used in this exanple, this instructs the Library
Manager to nake a new library, called "newncd", which contains a

single nodule, <called "nmod", which was obtained from a library
called "oldlib".

L.3.9

L.3.10

APPENDI CES

This section contains mscellaneous reference information which may
be useful to the progranmmer.

Appendix A Linkable File Format L.A1
Appendi x L* Loaders ... L.L*. 1

APPENDI X A
LI NKABLE FI LE FORVAT

The following is the Iinkable file format which is expected by the
Introl Linker and Loader.

There is no difference between a library file and a |Iinkabl e object
file as produced by the Assenbler, other than the fact that a
i nkabl e object file contains only a single nodule whereas a library

usual ly contains nultiple nodul es. In the special case of a file
which contains only a single nodule, it is permssible to have a
text size specified as zero even though the text has a non-zero
| engt h. VWhen a multi-byte value is specified, the nmobst significant

byte is assuned to appear first.

I NTROL LI NKABLE BI NARY FI LE FORVAT

HEADER
2 bytes Magic #
2 bytes Number of nodul e descriptors in this file
1 byte Checksum of header

MODULE DESCRI PTOR (repeated for each nodul e)
4 bytes Ofset to nodule text in file
4 bytes Size of text (may be zero if

single nodule in this file)

bytes Size of string area

byt e Modul e cl ass

byt e Modul e revi sion

bytes Rel ocatabl e segnment @x sizes

N L

| SF| SE| .. .| S7| S6| .. .| SO

Snis atw bit max size specifier:
00 one byte max size

01 - two byte max size
10 - three byte nax size
11 - four byte max size

4 bytes Rel ocatable segnment size descriptors
| SF| SE| ... |S7|S6]...|SO

Sn is a two bit descriptor size val ue:
00 - no size
01 - one byte size
10 - two byte size
11 - four byte size

.4 bytes segnment 0 size }

{ O.
{ 0..4 bytes segnent 1 size }

L.A1

{ 0..4 bytes segnent F size }
2 byte synbol count
For each synbol up to synbol count:

2 bytes Ofset of identifier in string area
2 byte Descriptor val ue

| SZ| XXXXX| N| E| I | Rl A] SEGM

Sz is the descriptor of the synbol's value
00 - the value is zero
01 - the value follows in one byte
10 - the wvalue follows in tw bytes
11 - the value follows in four bytes

is reserved

set if the synbol is an entry point

set if the synmbol is absolute

set if the synmbol is exported

set is the synbol is inported

(both E and | are set if the synbol

i s undefined segnent inported)

SEGM is the segment the synbol resides in
non- absol ut e.

—m>»2ZX

{ 0..4 byte synbol value }

The nmodul e descriptor string area starts here. The strings in

the string area are null term nated ASCI|I character strings.
The first string in the string area is the nodul e nane.

PROGRAM TEXT (follows all nodul e descriptors in the file)

The basic text format is:
|CM MODIFY] { O or nore operand bytes }
™M is the two bit comand
MODI FY is 6 bits of comrand specific info.
code 00 - Special function

| 00| FNCCODE| {| function specific operands|}

FNCODE is a six bit special function code:

0 - end of text
1 - set byte size relocation
2 - set word size relocation

L.A 2

3

set long size rel ocation

codes 4-15 are Loader conmands

4
5
6
7
8

©

10
11
12
13
14
15

-reserved
-reserved

Mul tiple byte comuands

The byte
two bits

coce 01 -
| 01| TCOUNT|

16
17
18
19
20
24
28

32
33
34

46
47
48
49

63

count is represented in the | ower
as follows:
00 - the byte count follows in one

byt e
01 - the operand follows in one byte
10 - the operand follows in tw bytes
11 - the operand follows in four bytes
- reserved

- skip with one byte byte count
- skip with two byte byte count
- skip with four byte byte count
- reserved

- reserved

- reserved

Segnent set commands
- set segment

0
- set segnment 1
- set segnment 2

- set segnment E
- set segment F
- reserved

reserved

pass absol ute text
| TCOUNT bytes of text|

L.A 3

TCOUNT - is the nunber of bytes to pass
(1-64). |If TCOUNT == 0 then
byte count is 64.

code 10 - offset relocati on conmand
| 10| Rl X SEGM | rel ocation size offset|

Rel ocati on is done in the previously
specified relocation size. The result
is the proper relocated datum wth the
base of the given segnent in this nodul e
added to the following offset. |If the
relative bit is set, the result is the
proper relocated datum with the result
bei ng equal to the relocated value m nus
the value of the |ocation counter foll ow-
the rel ocated val ue.

R - set if the relocation is relative
X - is reserved
SEGM - is the segnment # to relocate with

code 11 - synbol rel ocati on command
| 11| R XX] S| OF | one or two byte symbol #| {]|offset]|}

Rel ocati on is done in the previously
specified relocation size. The result
is the proper relocated datum wth the
result being equal to the value of the re-
sol ved synbol plus the optional follow ng
of f set. If the relative bit is set, the
result is the proper relocated datum
wi th t he result being equal to the
relocated value minus the value of the
| ocation counter follow ng the rel ocated
val ue.

R - set if the relocation is relative

XX - reserved

S - 0if one byte synbol #, 1 if tw byte sym
OF - size of the follow ng of fset

00 - zero offset
01 - byte offset
10 - word of fset
11 - long of fset

L.A 4

APPENDI X LF

FLD LOADER
OPTI ONS AND RUNTI ME ENVI RONVENT

The Introl Loader which generates Flex format output files is called
the "fld" Loader.

The fld Loader is the "standard" Loader that is furnished with the
part nunber FC6809 Introl-C Conpiler and, as such, is the the Loader
normal ly called by the FC6809's Linker when it finishes |inking. The
fld Loader is also optionally available for use with other versions
of Introl-C (ie for Introl-C packages that do not thenselves run
under the Flex operating systen) and, in such cases, is considered
as being an "optional" Loader for these versions. (Refer to the
"-d[<c>]" option discussed in the Linker section of this manual.)

The | oader command |ine call for the fld Loader is of the form
fld <fil enane> {<opti ons>}

where <filename> is the nodule to be |oaded and <options> are zero
or nore fld Loader option specifiers.

The fld Loader expects its input to be a relocatable nodule as

produced by the Introl Linker, with any appl i cabl e "standard
library”, references having been being resolved using the FC6809
Standard Library. The fld Loader produces an output that is

compati ble with, and executabl e under, the Flex operating system
Executable files generated by the fld Loader are characterized by
the filenane extension ".CMD', which the fld Loader automatically
appends to its output file.

Unl ess otherwi se indicated, the follow ng options for the fld Loader
may be specified on either the Iinker command |line (the typical case
when the Loader is being automatically called by the Linker) or on
t he | oader command line (when the Loader is being called
i ndependently by the user).

OPTI ONS

- a=<sec>: <seg>{, <seg>}
Assign segnent to a section; where <sec> represents a Flex
program segnent which should be either "text", "data", or
"bss", and <seg> is a segnent nunmber in the range 0 to 15. This
option allows the wuser to override the default settings for
pl acement of program segnents.

-c=<file>
Get additional parameters froma command file; where <file> is
the command file filenane. This option allows the wuser to

specify an unlimted nunber of paraneters by placing them one
to aline, in the naned text file.

L.LF. 1

-l [s][=<file>]

Produce an output Ilisting; where the "s" <character is an
optional entry, and <file> is an optional filenane. This option
forces the Loader to generate an output |isting. If the
optional s character is specified, the listing wll contain
synbol information. |[If the optional filenane specification is

included, the listing will be placed in the named file.

- 0o=<nane>

Set output file nane; where <nane>is to be the nanme of the
output file. If this option is omtted, the output file nane
will be that of the input name. If no filename extension is
explicitly defined, the default extension ".CMD' wll be
assi gned.

Make an executable file no matter what! This option will cause
the Loader to produce an executable output file even if there
are still unresolved external references. It is not guaranteed
as to what the result will be if the programactually attenpts
to access one of these unresolved itens.

-y[{t|d|b}]=<origin>

Set origin; where the "t" or "d" or "b" character is optional
and <origin>is a hexadecinmal nunber. This option may be used

to set the origins of the text, initialized data, and
uninitialized sections of the output file. If not or dor b
character is specified, or if the t character is specified, the
text section wll be placed at the |location indicated by

<origin> |If the d character is specified, the initialized data
section wll be placed at the location indicated by <origin>.
If the b character is specified, the bss (uninitialized data)
section will be placed at the location indicated by <origin>.
if this option is not specifed, the text section will default
be being placed at the zero origin, and wll be imediately
followed by the initialized data section, which wll be
i medi ately followed by the uninitialized data section

Zap the input file. This option deletes the input file after
the Loader has finished using it. Wien the Linker automatically
calls the Loader, the Linker normally specifies this -z option
as part of the call to cause the Loader to delete the file
produced by the Linker (ie the internediate ".RL" extension
file) when it is no | onger needed for | oading purposes.

L.LF. 2

RUNTI ME DATA MEMORY NAP

The runtinme menory map shows the layout of the data space which a
program has available during execution. The data appears in two
areas, one of whichis placed toward the low end of nenory and
another which is placed at the high end of nmenory (bel ow the Flex
operating system). The heap is placed in the |low end of nmenory and
grows upward by asking the operating system to enlarge its nmenory
space. The stack is placed in the area at the high end of nenory.

DATA MEMORY NAP
(1 ow nmenory)
TEXT SECTI ON
DATA SECTI ON

BSS SECTI ON

SP ->

(hi gh nenory)

Introl-Cis a registered trademark of Introl Corp.
Flex is a trademark of Technical Systenms Consultants, Inc.

L.LF. 4

class list, linker 1.3, 1.4, 1.9
command file, library nmanager 3.2
command files, library manager 3.6
command files, linker 1.6
coormand line, linker 1.1

command |ine, |oader 2.2

commands, library manager 3.3
1

conpi |l er-generated synbols
entry point specification
entry point synbol 1.2
filenanes, linker 1.8

fil enanes, | oader 2.2
files, library 3.1

input files, linker 1.1
[ibman 3.1

library files 3.1

l'i brary manager 3.1

i brary manager call Iline

l'i brary manager command files 3.6

l'i brary manager commands 3.3

1

7

8

3.
l'i brary manager command file 3.2

linker class list 1.3. 1.4, 1.9

| inker command files 1.6
| inker command line 1.1

Pr ogram Text

External and Static area
(initialized)

(unitialized)

Dynam ¢ Menory Heap
Stack Area

| ocal variables and
subroutine |inkages

Par anmet er area

2

| NDEX

linker filenanes 1.8

linker input files 1.1

linker listing 1.8

linker operation 1.2

linker options 1.6

linker output files 1.1
linking, partial 1.3

listing, linker 1.8

| oader calls 1.6, 1.8, 2.1

| oader command line 2.2

| oader filenanmes 2.2

| oader nanes 2.2

| oader options 2.2

nodul e cl ass nunber 1.3

nam ng synbol, primary function 1.8
operation, linker 1.2

options, linker 1.6

options, |oader 2.2

output files, linker 1.1
partial linking 1.3

primary function name 1.2
primary function nam ng synbol 1.8
synbol s, conpiler-generated 1.8

